
1 Asymptotical Notations

Among the following functions in n, please select all that are polynomial or negligible functions in n.

Definition (Negligible Function) A function ε(n) is negligible if for every c, there exists some n0
such that for all n > n0,

ε(n) ≤ 1

nc
.

Definition (Polynomial Function). A function p(n) is polynomial if there exists c, n0 such that
for all n > n0,

p(n) ≤ nc.

1. n100

2. 2logn

3. 2n

4. nlog logn

5. 1
2n2

6. 1
2n

7. 1
nlog log n

8. n− log log logn

9. n−3

Sol.

1. 1
2n is negligible.

To show 1
2n is negligible in n, it suffices to derive that for any constant c, there exists constant n0

such that for all n > n0,
1
2n ≤

1
nc . Rearranging and taking lg(·) on both sides of the inequality,

we want c lg n ≤ n. Therefore, choosing n0 = max(c2, 16), we consider two cases: c ≥ 4 or c < 4.

Case 1: c ≥ 4 and thus n0 = c2 ≥ 16, then for all n > c2 ≥ 16,

c ≤ c2

2 lg c
<

n

lg n
,

where both inequality hold by that fact that x/ lg x is monotonically increasing for any x ≥ 4.

Case 2: c < 4, and n0 = 16. It holds that c < 4 = 16
lg 16 <

n
lgn for all n > n0 (also by x/ lg x is

monotonically increasing for any x ≥ 4).

Note that to show x/ lg x is increasing, we need to take its derivative and find its minimum for
those large enough x. In fact, we could have n0 = max(c2, 4) in the above with more involved
minimum calculation.

2. 1
2log n is not negligible.

To show 1/2logn is not negligible, it suffices to show that there exists constant c such that for
infinitely many n, 1/2logn > 1/nc. Rearranging it, we want some c such that nc > 2logn = n
holds. Choosing c = 2, we have n2 > n for all n > 1. As desired, there are infinitely many such
n as there are infinitely many natural numbers.
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2 Closure Under Operations

Suppose that f1(n), f2(n) are negligible functions in n, and g(n) some fixed polynomial in n. Which
of the following must be negligible functions in n?

1. f1(n) + f2(n)

2. f1(n)f2(n)

3. f1(n)g(n)

4. g(n)

5. f1(n)g(n)

6.
√
f1(n)

Let g1(n), g2(n) denote two fixed polynomials in n. Which of the following must be polynomial in
n:

1. g1(n) + g2(n)

2. g1(n)g2(n)

3. g1(n)g2(n)

4. g1(n) + 203942

5. g1(n) + 2n

6. 2g1(n)

7. g1(n)100

Sol. f1(n) + f2(n) is negligible.
To show f(n) = f1(n) + f2(n) is negligible in n, it suffices to derive that for any constant c, there

exists constant n0 such that for all n > n0, f(n) ≤ 1
nc .

With fixed c, given that f1, f2 are both negligible, we have that (a) there exists constant n1 such
that for all n > n1, f1(n) ≤ 1/nc+1, and (b) there exists constant n2 such that for all n > n2,
f2(n) ≤ 1/nc+1. Therefore, for all c, choosing constant n0 = max(n1, n2, 2), we have, for all n > n0,

f(n) = f1(n) + f2(n) ≤ 1

nc+1
+

1

nc+1
=

2

n · nc
≤ 1

nc
,

as desired. Note that f1(n) ≤ 1/nc+1 holds for large enough n because c + 1 is a constant and f1 is
negligible (and that of f2 similarly).

3 Union Bound

Let A1, A2, . . . , An be events. Then,

Pr[A1 ∪A2 ∪ . . . ,∪An] ≤ Pr[A1] + Pr[A2] + · · ·+ Pr[An].

Proof. We claim that for any events A,B, Pr[A ∪ B] ≤ Pr[A] + Pr[B], and then the union bound
of n events holds by induction. To show it, by inclusion-exclusion principle, we have Pr[A ∪ B] =
Pr[A] + Pr[B]− Pr[A ∩B] ≤ Pr[A] + Pr[B], where the second step holds because Pr[A ∩B] ≥ 0.
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Example. G(n, p) is the graph G on n nodes, where for every pair of vertices an edge is included
with probability p. Show that the probability that there is an isolated vertex is upper bounded by
n(1− p)n−1.

Proof.
Pr[vertex 1 is isolated] = (1− p)n−1

By the union bound,
Pr[exists isolated vertex ] = n(1− p)n−1

Note that the event that vertex 1 is isolated and the event that vertex 2 is isolated are not inde-
pendent. The union bound is used everywhere in cryptography, especially because you do not need
independence to apply the union bound.

4 Perfectly Secret Encryption

Example 1. A perfectly secret encryption can leak information about secret key.

Sol. The encryption scheme is described as follows: Message space M = {0, 1}10, key space K =
{0, 1}11, and

• Gen: output k ← K.

• Enc(k,m): use the first 10 bits of k to XOR m, and leaks the 11-th bit of k. That is, output
c := k1→10 ⊕m||k11, where || denotes concatenation.

• Dec(k, c): use first 10 bits of k to recover m.

This scheme is perfectly secure by the same proof of the One-time pad, but it clearly leaks infor-
mation, the 11-th bit, about secret key k.

Example 2. Leaking nothing about secret key doesn’t imply perfect secrecy.

Sol. We can propose an encryption algorithm Enc(k,m) that outputs plaintext m directly, which leaks
no information about secret key k but not secure.

5 Identical Distributions

Let D : {0, 1}3 → {0, 1}3 be an randomized algorithm such that D(x) := r ← {0, 1}3, output x ⊕ r.
Let a = 110, b = 001. Sample random variables X1 ← D(a), X2 ← D(b), X3 ← {0, 1}3. Prove of
disprove the if the pairs of the following distributions are identical

1. Distributions of X1, X2.

2. Distributions of X2, X3.

Sol. X1, X2, X3 are identical distribution.
To show that, fix any t and consider Pr[X1 = t] and Pr[X2 = t]. If t /∈ {0, 1}3, then Pr[X1 = t] =

0 Pr[X2 = t]. If not, t ∈ {0, 1}3, and Pr[X1 = t] = Pr[r ← {0, 1}3 : r ⊕ t = a] by definition of X1, RHS
equals to Pr[r ← {0, 1}3 : r = a ⊕ t] by XOR, and finally it equals to 1/8 as a ⊕ t is a fixed value.
Similarly, Pr[X2 = t] = 1/8, and we conclude that Pr[X1 = t] = Pr[X2 = t] for all t. We can also show
that X2 = X3 in the same way.
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6 Perfect Secrecy

Consider the following encryption schemes. Prove or disprove if the schemes are perfectly secret. In
the schemes below, the key generation function simply outputs one of the keys at uniformly random.

(Recall that to show that a scheme is not perfectly secret you just have to give a counter example
with two messages and a ciphertext and compute the probabilities)

6.1 Scheme 1

M = {00, 01, 10, 11}, K = {0, 1},
• Enc is described using the following table

k m Enc(k,m)
0 00 01
0 01 10
0 10 11
0 11 00
1 00 10
1 01 01
1 10 00
1 11 11

• Dec can be read from the same table by swapping the second and third columns and renaming
them c and Dec(k, c) respectively.

Sol. Consider the definition of perfect secrecy:

∀m1,m2 ∈M, ∀c ∈ C, Pr[k ← Gen(1n) : Enck(m1) = c] = Pr[k ← Gen(1n) : Enck(m2) = c]

Let m1 = 00, m2 = 11, c = 11, then

Pr[k ← Gen(1n) : Enck(m1) = c] = 0

Pr[k ← Gen(1n) : Enck(m2) = c] = Pr[k ← Gen : k = 1] =
1

2

∴This scheme is not perfectly secure.

6.2 Scheme 2: Variant of Caesar-cipher

M = {0, 1, ..., 7}, K = {0, 1, ..., 7},
• Enc(k,m) = (m+ k) mod 8. (+ denotes addition and not the XOR operation)

• Dec(k, c) = (c− k) mod 8

where (a mod 8) is the remainder obtained when a is divided by 8.

Sol. ∀m1,m2 ∈M,∀c ∈ C,

Pr[k ← Gen(1n) : Enck(m1) = c] = Pr[k ← Gen : k = (c−m1) mod 8] =
1

8

Pr[k ← Gen(1n) : Enck(m2) = c] = Pr[k ← Gen : k = (c−m2) mod 8] =
1

8

∴This scheme is perfectly secure.
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6.3 Scheme 3: Revisit Scheme 2

M ′ = M ×M , K = {0, 1, ..., 7}, M is defined in Scheme 2.

• Enc(k, (m1,m2)) = ((m1 + k) mod 8, (m2 + k) mod 8). (+ denotes addition and not the XOR
operation)

• Dec(k, (c1, c2)) = ((c1 − k) mod 8, (c2 − k) mod 8)

where (a mod 8) is the remainder obtained when a is divided by 8.

Sol. Let m1 = (1, 1), m2 = (1, 2), c = (1, 1), then

Pr[k ← Gen(1n) : Enck(m1) = c] = Pr[k ← Gen : k = 0] =
1

8
Pr[k ← Gen(1n) : Enck(m2) = c] = 0

∴This scheme is not perfectly secure.
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