CS4830: Encryption

Instructor: Elaine Shi, Weikai Lin

March 22, 2017

1 Hybrid Encryption

Definition 1. (Secure Symmetric-Key Encryption, 91.1). The encryption scheme (gen, enc, dec) is said to be single-message secure if \forall non uniform p.p.t. D, there exists a negligible function $\epsilon(\cdot)$ such that for all $n \in \mathbf{N}, m_0, m_1 \in \{0, 1\}^n$, D distinguishes between the the following distributions with probability at most $\epsilon(n)$:

• $\{k \leftarrow \operatorname{gen}(1^n) : \operatorname{enc}_k(m_0)\}_n$

• $\{k \leftarrow \operatorname{gen}(1^n) : \operatorname{enc}_k(m_1)\}_n$

Definition 2. (Secure Public Key Encryption, 102.2). The public key encryption scheme (Gen, Enc, Dec) is said to be secure if for all non uniform p.p.t. D, there exists a negligible function $\epsilon(\cdot)$ such that for all $n \in \mathbf{N}$, $m_0, m_1 \in \{0, 1\}^n$, D distinguishes between the the following distributions with probability at most $\epsilon(n)$:

- ${(pk, sk) \leftarrow \mathsf{Gen}(1^n) : (pk, \mathsf{Enc}_{pk}(m_0))}_n$
- ${(pk, sk) \leftarrow \mathsf{Gen}(1^n) : (pk, \mathsf{Enc}_{pk}(m_1))}_n$

Public-key encryption is typically slower than symmetric-key encryption. Therefore, when we have a long message to encrypt, it is a good idea to use the public key encryption to encrypt a symmetric key, and then use the symmetric key to encrypt the message.

Formally, let (Gen, Enc, Dec) denote a (single-message) secure public-key encryption, and let (gen, enc, dec) denote a (single-message) secure symmetric-key encryption. Consider the following public-key encryption scheme (Gen', Enc', Dec'):

- $\operatorname{Gen}'(1^n)$: call $(pk, sk) \leftarrow \operatorname{Gen}(1^n)$, and output the public key pk and secret key sk.
- $\operatorname{Enc}'(pk,m)$: call $k \leftarrow \operatorname{gen}(1^n)$, and output the following ciphertext: $\operatorname{Enc}_{pk}(k)$, $\operatorname{enc}_k(m)$
- $\mathsf{Dec}'(sk, \mathsf{ct})$: parse $\mathsf{ct} := (c_0, c_1)$. Call $k := \mathsf{Dec}_{sk}(c_0)$, and then call $m := \mathsf{dec}_k(c_1)$.

Please prove that this is a secure encryption scheme. *Hint: we are sampling* k *randomly, but it is for all* m_0, m_1 in the definition of secure public key encryption.

Sol.

Proof. Assume for contradiction, there exists nuPPT D, polynomial p, for infinitely many $n \in \mathbf{N}$, exists $m_0, m_1 \in \{0, 1\}^n$ such that D distinguishes between the following distributions with probability 1/p(n):

$$C_0 = \{(pk, sk) \leftarrow \mathsf{Gen}'(1^n) : \mathsf{Enc}'(pk, m_0)\},\$$

$$C_1 = \{(pk, sk) \leftarrow \mathsf{Gen}'(1^n) : \mathsf{Enc}'(pk, m_1)\}.$$

To define hybrids, define following encryption algorithm:

 $\operatorname{Enc}''(pk,m)$: call $k \leftarrow \operatorname{gen}(1^n)$, output the following ciphertext: $\operatorname{Enc}_{pk}(0)$, $\operatorname{enc}_k(m)$.

Then, define following hybrid ensembles.

- $H_0 = \{(pk, sk) \leftarrow \mathsf{Gen}'(1^n) : \mathsf{Enc}''(pk, m_0)\}.$
- $H_1 = \{(pk, sk) \leftarrow \text{Gen}'(1^n) : \text{Enc}''(pk, m_1)\}.$

By Hybrid Lemma, D must be able to distinguish between one of three pairs of distributions with probability at least 1/3p(n): (C_0, H_0) , (H_0, H_1) , or (H_1, C_1) . We show that all cases are impossible, and then (Gen', Enc', Dec') is a single-message secure public-key encryption.

• C_0, H_0 . Rewriting C_0 and H_0 with procedures in Gen', Enc', Enc'', and D distinguishes between them with probability $\geq 1/3p(n)$:

$$|\Pr[(pk, sk) \leftarrow \mathsf{Gen}(1^n); k \leftarrow \mathsf{gen}(1^n) : D(1^n, \mathsf{Enc}_{pk}(k), \mathsf{enc}_k(m_0)) = 1] -$$

$$\Pr[(pk, sk) \leftarrow \mathsf{Gen}(1^n); k \leftarrow \mathsf{gen}(1^n) : D(1^n, \mathsf{Enc}_{pk}(0), \mathsf{enc}_k(m_0)) = 1]| \ge 1/3p(n).$$

Rewriting the LHS with summation (and omitting the sampling of pk, k for readability),

$$\begin{split} &|\Pr[D(1^{n},\mathsf{Enc}_{pk}(k),\mathsf{enc}_{k}(m_{0}))=1]-\Pr[D(1^{n},\mathsf{Enc}_{pk}(0),\mathsf{enc}_{k}(m_{0}))=1]|\\ &=\left|\sum_{a}\Pr[D(1^{n},\mathsf{Enc}_{pk}(a),\mathsf{enc}_{a}(m_{0}))=1|k=a]\Pr[k=a]\right|\\ &-\sum_{a}\Pr[D(1^{n},\mathsf{Enc}_{pk}(0),\mathsf{enc}_{a}(m_{0}))=1|k=a]\Pr[k=a]\right|\\ &=\sum_{a}\Pr[k=a]\left|\Pr[D(1^{n},\mathsf{Enc}_{pk}(a),\mathsf{enc}_{a}(m_{0}))=1|k=a]-\Pr[D(1^{n},\mathsf{Enc}_{pk}(0),\mathsf{enc}_{a}(m_{0}))=1|k=a]\right|\\ &=\sum_{a}\Pr[k=a]|d(a)|, \end{split}$$

where $d(a) = \Pr[D(1^n, \mathsf{Enc}_{pk}(a), \mathsf{enc}_a(m_0)) = 1] - \Pr[D(1^n, \mathsf{Enc}_{pk}(0), \mathsf{enc}_a(m_0)) = 1]$. Note that there is no k in d(a). Given (Gen, Enc, Dec) is a secure public key encryption, there exists a negligible function ϵ such that for all $n \in \mathbb{N}$, for all a, $\Pr[D(1^n, \mathsf{Enc}_{pk}(a)) = 1] - \Pr[D(1^n, \mathsf{Enc}_{pk}(0)) = 1] \leq \epsilon(n)$. By closure under efficient operation, $|d(a)| \leq \epsilon(n)$. Hence, $\sum_a \Pr[k = a]|d(a)| \leq \sum_a \Pr[k = a]\epsilon(n)$ for all $n \in \mathbb{N}$, which contradicts D distinguishes between C_0, H_0 with probability $\geq 1/3p(n)$ for infinitely many n.

• H_0, H_1 . Rewriting H_0 and H_1 with procedures in Gen', Enc", and D distinguishes between them with probability $\geq 1/3p(n)$:

$$|\Pr[(pk, sk) \leftarrow \mathsf{Gen}(1^n); k \leftarrow \mathsf{gen}(1^n) : D(1^n, \mathsf{Enc}_{pk}(0), \mathsf{enc}_k(m_0)) = 1] -$$

$$\Pr[(pk, sk) \leftarrow \text{Gen}(1^n); k \leftarrow \text{gen}(1^n) : D(1^n, \text{Enc}_{pk}(0), \text{enc}_k(m_1)) = 1]| \ge 1/3p(n)$$

Define nuPPT as $M(x) := (pk, sk) \leftarrow \text{Gen}(1^n)$, output $\text{Enc}_{pk}(0), x$. Rewriting LHS of the above equation,

$$|\Pr[k \leftarrow gen(1^n) : D(1^n, M(enc_k(m_0))) = 1] - \Pr[k \leftarrow gen(1^n) : D(1^n, M(enc_k(m_1))) = 1]|,$$

we found M is an efficient operation of $\operatorname{enc}_k(m_0)$ or $\operatorname{enc}_k(m_1)$. By (gen, enc, dec) is a secure single message encryption, and then by Closure under Efficient Operation, D cannot distinguish H_0, H_1 with probability 1/3p(n) for infinitely many $n \in \mathbb{N}$. It is a contradiction as desired.

• H_1, C_1 . Following the arguments of C_0, H_0 symmetrically with m_1 , we can lead to a contradiction.

2 Constructing Secure Symmetric-Key Encryption

Definition 3. (Pseudo-random Function, 96.2). A family of functions $\{f_s : \{0,1\}^{|s|} \rightarrow \{0,1\}^{|s|}\}_{s \in \{0,1\}^*}$ is pseudo-random if

- (Easy to compute): $f_s(x)$ can be computed by a p.p.t. algorithm that is given input s and x
- (Pseudorandom): $\{s \leftarrow \{0,1\}^n : f_s\}_n \approx \{F \leftarrow \mathsf{RF}_n : F\}_n$.

Assume $m \in \{0,1\}^n$ and let $\{f_k\}$ be a PRF family. Let U_n be uniform distribution over $\{0,1\}^n$.

- Gen (1^n) : $k' \leftarrow U_n$. Let $k = k'_l || 0^{n-l}$.
- $\operatorname{Enc}_k(m)$: Pick $r \leftarrow U_n$. Output $(r, m \oplus f_k(r))$
- $\mathsf{Dec}_k((r,c))$: Output $c \oplus f_k(r)$

Is it a single-message secure encryption if (a) l = 100, (b) $l = \log n$, (c) l = n/2, (d) l = n - 1? Is it a multi-message secure encryption if (a) l = 100, (b) $l = \log n$, (c) l = n/2, (d) l = n - 1?