
Chapter 2

Storage Outsourcing
Elaine Shi

In this chapter, we will use cloud outsourcing as a motivating theme to
describe several simple and elegant cryptographic protocols. Cloud computing
allows users to store files and retrieve them anywhere and anytime. An obvi-
ous concern is security — if the cloud server is compromised or hacked into,
then data on the server may be tampered with or leaked. We will describe
various cryptographic protocols that aim to provide integrity, availability,
and privacy.

Note that most of these cryptographic constructions actually have much
broader applications outside storage outsourcing. To aid understanding, how-
ever, we will describe these schemes in the application context of the storage
outsourcing.

2.1 Integrity: Merkle Hash Tree

Imagine that Alice is a teaching assistant for Applied Cryptography, she stores
students’ grades on a Google cloud server. When she retrieves the grades from
the server, it is important to make sure that the grades be correct. How can
we achieve this?

Strawman idea. A näıve idea is for Alice to store a checksum locally, and
whenever she retrieves the grade file, the checks whether the retrieved file
matches the checksum. For example, G = (g1, g2, ..., gm) be the grades of m
students. Alice could store the checksum CheckSum(G) := Σi∈mgi mod P ,
where P is a sufficiently large prime integer.

Such a checksum scheme may be good enough to defeat random errors, but
is not strong enough to defeat adversarially generated errors. In particular,

13

14 storage outsourcing

an adversary can easily modify the grades in a way that preserves the sum
mod P , e.g., by adding 10 to one student’s grade and subtracting 10 from
another.

In cryptography, we would like to develop schemes that protect against ad-
versarially introduced errors. No matter how the server deviates from honest
behavior, our schemes should always be able to detect it except with negligible
probability.

To accomplish this task, we will first introduce a new cryptographic prim-
itive.

Collision Resistant Hash Function (CRH)

Definition 2.1. A family of functions H = {Hi : Di → Ri}i∈I is a family of
collision-resistant hash functions (CRH) if :

1. (ease of sampling) there is a probablistic polynomial time algorithm Gen
that samples an instance efficiently: Gen(1n) ∈ I

2. (compression) ∀i ∈ I, |Ri| < |Di|

3. (ease of evaluation) Given x, i ∈ I, the computation of Hi(x) can be
done in probabilistic polynomial time.

4. (collision resistance) for all non-uniform probabilistic polynomial time
Turing machine A, there exists a negligible function ε such that ∀n ∈ N,

Pr[i← Gen(1n);x, x′ ← A(1n, i) : Hi(x) = Hi(x
′) ∧ x 6= x′] < ε(n)

Note that since ∀i ∈ I, |Ri| < |Di|, i.e., the output of the hash is shorter
than the input, collisions must exist by the pigeon-hole principle. The simplest
way to find a collision is to brute-force enumerate all possibilities, then a
collision is guaranteed. However, if the security parameter n is large enough,
no computationally bounded adversary should be able to find collisions in say,
10,000 years.

We can construct collision-resistant hash functions from cryptographic as-
sumptions, such as Discrete Logarithm. More details can be found in Chapter
5 of Pass and Shelat’s textbook [PS10]. In practice, we often use SHA-256,
SHA-384 and SHA-512 [NIS02] as heuristic candidates for collision resistant
hashes. These functions are known to have certain good properties.

2.1. INTEGRITY: MERKLE HASH TREE 15

Using a CRH to ensure integrity. Suppose that Alice wishes to store a
file F on a Google server. Alice samples a hash function H from a CRH family
H (using a sufficiently large security parameter n). Alice now uploads F to
the server but stores the cryptographic digest H(F) locally. Notice that the
file F can be much larger than the cryptographic digest H(F). When Alice
gets back a file F ′ from the server, she accepts the file if H(F) = H(F ′). If a
malicious server can mislead Alice to ever accept a wrong file, we must be able
to leverage the server to find a hash collision, thus contradicting the collision
resistance property. In other words, the digest H(F) cryptographically binds
to the file F assuming that the adversary (i.e., the server) is computationally
bounded.

Storing Multiple Files

Now consider a more challenging scenario. Instead of storing a single file,
Alice has a large database of files denoted F1, F2, . . . , FN . She wishes to store
all these files on the server, but every time she is interested in reading only
one file — e.g., think of each file as an email.

Strawman idea 1. One naive idea is to use the same scheme as before,
that is, Alice stores the digest H(F1, . . . , FN) locally. However, every time
she retrieves a file of interest Fi, she would have to download all other files in
order to verify the correctness of Fi. Clearly this requires Θ(N) cost for reads,
and thus is too expensive (e.g., the entire database of files can be terabytes in
size but each file is small).

Strawman idea 2. Another straightforward idea is for Alice to store N
digests, H(F1), H(F2), . . . ,H(FN) locally. In this way, Alice need not re-
trieve any additional data if she is only interested in reading Fi. However,
this scheme requires that Alice stores Θ(N) digest data locally, which is also
expensive especially if Alice is using her weak mobile phone as the client.

We will now describe a new approach called the Merkle Hash tree, which
was first invented by Ralph Merkle [Mer89].

Merkle Hash Tree

We now explain how a Merkle hash tree works (see Figure 2.1). Suppose that
we divide the entire storage into N blocks, Block1,Block2, ...,BlockN — one
can think of each block as a file if all files were equal size. Without loss of
generality, we will assume that N is a power of 2 — since otherwise we can

16 storage outsourcing

h18 := H(h14, h58)

h14 := H(h12, h34)

h12

h1 = H(Block1)

Block1

h2

Block2

h34

h3

Block3

h4

Block4

h58

h56

h5

Block5

h6

Block6

h78

h7

Block7

h8

Block8

Figure 2.1: A Merkle hash tree containing 8 blocks.

always round it up to the nearest power of 2 incurring only a constant factor
blowup. These N original blocks correspond to the leaves of the Merkle hash
tree.

Now, we first hash each block individually, i.e., for i ∈ [N], hi := H(Blocki).
Next, for other level in the tree, its hash value is computed as the hash of its
two children. For example, in Figure 2.1, h14 := H(h12, h34). Finally, the
client stores the root digest and the server stores the entire Merkle hash tree
including the hashes of all internal nodes.

Read

Whenever a client wants to read a specific block, besides the block, which
hashes must the client retrieve in order to verify correctness of the block?
For example, in Figure 2.2, say, the client wishes to retrieve Block3. It is not
hard to see that if the client additionally retrieves all the yellow hashes, it can
verify the correctness of Block3 — in particular, the client would be able to
recompute all the red hashes in the tree representing the path from Block3 to
the root.

The above observation can be generalized into the following read proce-
dure. To read a block (e.g., Block3 in Figure 2.2), the client performs the
following actions:

1. Draw the path from the root to the block she wants to read (e.g., red
nodes in Figure 2.2), henceforth referred to as the Merkle path.

2.1. INTEGRITY: MERKLE HASH TREE 17

h18

h14

h12

h1

Block1

h2

Block2

h34

h3

Block3

h4

Block4

h58

h56

h5

Block5

h6

Block6

h78

h7

Block7

h8

Block8

Figure 2.2: Example: read operation of a Merkle hash tree

2. Fetch every sibling node (e.g., yellow nodes in Figure 2.2) of the Merkle
path, henceforth referred to as the Merkle proof.

3. Reconstruct all hashes on the Merkle path (e.g., read nodes in Fig-
ure 2.2).

4. Compare the root hash reconstructed in this manner against the locally
stored digest, and accept the block if they are equal.

It is not hard to see that each read operation results in reading O(logN)
additional hashes.

Without going into formal security definitions, we provide an informal
argument why the above Merkle tree construction preserves the integrity of
any data fetched. Consider the example in Figure 2.2 where the client wishes
to read Block3 — henceforth we use Block3 to denote the correct value of
the block. Suppose that the server can succeed in convincing the client into
accepting a wrong value denoted Block′3 6= Block3. We now argue that we must
be able to leverage such a server to find a hash collision. Suppose that the
server succeeded in deceiving the client into accepting the wrong value Block′3
by returning the Merkle proof {h′12, h′4, h

′
58}. Henceforth all unprimed values

denote the correct values, whereas primed values denote the values actually
received or reconstructed by the client. Consider the path from the root to
Block3. We know that the reconstructed root hash h′18 must be the same as
the client’s locally stored value h18. Thus one of the following must be true:

1. either H(Block′3) = h3;

18 storage outsourcing

2. or h′3 := H(Block′3) 6= h3, but H(h′3, h
′
4) = h34;

3. or h′3 := H(Block′3) 6= h3, and h′34 := H(h′3, h
′
4) 6= h34, but H(h′12, h

′
34) =

h14;

4. or h′3 := H(Block′3) 6= h3, and h′34 := H(h′3, h
′
4) 6= h34, and h′14 :=

H(h′12, h
′
34) 6= h14, but H(h′14, h

′
58) = h18.

In all of the above cases, it is not hard to see that we have found a hash
collision. Recall again that a hash collision always exists — but here we show
that if a probablistic polynomial time server can find one with significant
probability, then we can leverage such a server to find collisions efficiently,
thus violating the collision resistance property of the hash function.

Write

So far we have focused our discussions on reads. Now we consider how to
support write operations. During a write operation, the client must update
its locally stored root digest. To achieve this, the client performs the following:

1. First, perform a read operation on the block being updated (e.g., Block3

in Figure 2.2), fetching the Merkle proof (e.g., yellow nodes in Figure 2.2)
consisting of all siblings of the Merkle path. Verify that the fetched block
and the Merkle proof are correct by reconstructing the root hash and
comparing the reconstructed value with the locally stored digest.

2. Next, given the Merkle proof and the new value of the block to be
updated, it is not hard to see that the client has sufficient information
to compute the new root hash. The client stores the new root hash as
the updated digest.

3. The client sends the new block to the server, and the server updates all
hashes along the corresponding Merkle path accordingly.

It is not hard to see that each write operation involves retrieving O(logN)
hashes. We also point out that with writes, a Merkle hash tree scheme not
only guarantees integrity, but also freshness, i.e., if the client ever accepts a
block fetched, then the accepted block must reflect the last value written.

2.2. AVAILABILITY: PROOF OF RETRIEVABILITY (POR) 19

Applications and Real-World Adoption

Merkle hash trees (and variant constructions) have been adopted in vari-
ous applications to ensure the authenticity of data storage, such as revision
control systems [git], Bitcoin [Nak09], secure processors [SCG+03, TML+00,
MAB+13, AGJS13], outsourced cloud storage [zfs, tah, GPTT08].

2.2 Availability: Proof of Retrievability (PoR)

Alice stores or backs up her data in the cloud (e.g., Dropbox). Since Alice
might be paying Dropbox subscription for the storage service, Alice would like
to make sure that the Dropbox is indeed storing all ofher data, and that no
data is lost. How can Alice be sure of this?

Strawman solution. A trivial solution is for Alice to store a Merkle tree
digest of all her data. Every month, Alice performs an audit where she down-
loads each and every block in the dataset along with every block’s Merkle
proof. In this way, Alice is able to verify the correctness of every block down-
loaded, and thus at the end of the audit, Alice is sure that the server must be
storing all of her blocks.

An obvious drawback of this strawman scheme is that it is very expensive,
especially if Alice is outsourcing terabytes of data.

Can we have a solution where the cost of making an audit is sublinear in
the total data size?

Another attempt: probablistic checking. As a second try, our idea is
to perform probabilistic checking rather than downloading the entire dataset
during an audit. Alice still stores the Merkle digest of the dataset. Now,
say, every month, Alice picks a random subset of k blocks, and challenges
the server to return the k blocks as well as their Merkle proofs. Alice checks
the correctness of the downloaded blocks against its local digest, and she is
satisfied with the audit if all checks succeed.

We now analyze this probabilistic checking scheme.

• Scenario 1: the server has lost many blocks. Such a probabilistic
checking scheme is indeed great at detecting a cheating server that has lost
many blocks. As a simple example, consider that the server has lost half of
the blocks (the analysis below generalizes to any constant fraction). The
probability that such a cheating server escapes detection is the following,

20 storage outsourcing

since for each of the k random challenges, the server succeeds in answering
the challenge with probability 1

2 .

Pr[server escapes detection] =
1

2k

This means that if k is our security parameter, then the probability that
such a cheating server can survive an audit is negligible in k, and Alice is
happy.

• Scenario 2: the server has lost a small number of blocks. Unfor-
tunately, this probabilistic checking scheme would frequently fail to detect
a server that has lost only a small number of blocks.

For example, consider a server that has lost exactly 1 block. Such a cheating
server can survive an audit with the following probability where N denotes
the total number of blocks outsourced:

Pr[server escapes detection] = (1− 1

N
)k

In particular, note that for each of the k challenges, the server can succeed
in answering the challenge with probability 1− 1

N .

Now, even when Alice samples a large number of blocks, say k = N
2 , we

claim that the server can still escape detection with O(1) probability, since

(1− 1

N
)
N
2 =

(
(1− 1

N
)N
) 1

2

≈ exp(−0.5) = O(1)

This is unsatisfying, since we would like a scheme with strong security:
even when the server has lost only a single block, Alice can detect it in an
audit except with negligible probability.

Soundness Amplification with Erasure Code

As shown above, the simple probabilistic checking scheme does not achieve
strong enough soundness, i.e., a cheating server that has lost one block can
escape detection with constant probability. Erasure codes or error-correcting
codes are often adopted for amplifying soundness in various theoretical and
practical applications.

A natural idea is the following: let N denote the total number of blocks in
the original dataset. We now encode N original blocks into 2N code-blocks,

2.2. AVAILABILITY: PROOF OF RETRIEVABILITY (POR) 21

with a redundancy blowup of 2. In particular, we will leverage an erasure
coding scheme with the following property: given any N out of 2N code-
blocks, we can recover the entire dataset of size N . For the time being, let
us assume that such an erasure coding scheme does exist. If our dataset has
been encoded in this way, then this means that for the server to actually cause
any data loss, it must have lost at least half of the code-blocks (otherwise,
there is sufficient information left to reconstruct the entire dataset). As we
argued earlier, our simple probabilistic checking scheme can almost always
(i.e., except with negligible failure probability) detect a cheating server that
has lost half of the blocks! Therefore, it suffices to show how to construct an
erasure coding scheme satisfying the aforementioned property.

Erasure code. An (N,M)-erasure code has two deterministic algorithms —
henceforth we assume that all blocks and code-blocks are bit-strings of length
`, and we omit writing ` explicitly.

Encode: takes N data blocks Block1,Block2, ...,BlockN , and outputs M ≥ N
code-blocks C1, C2, ..., CM .

Decode: takes any N code-blocks, and outputs N decoded blocks.

We say that (N,M)-erasure coding scheme is correct iff for any set of
N blocks {Blocki}i∈[N], for any index set S ⊆ [M] of size N , let {Ci}i∈[M] ←
Encode({Blocki}i∈[N]), then it must hold that Decode({Ci}i∈S) = {Blocki}i∈[N].

We present a very simple (N, 2N)-erasure code construction. The idea is to
rely on polynomial interpolation. Consider a uni-variate polynomial of degree
d − 1 operating over a finite field Fp where p is a prime, i.e., all coefficients
are integers mod p, and all arithmetic is performed mod p. One important
observation is that if we know the polynomial evaluated at d places, then we
can reconstruct the polynomial efficiently.

Therefore, we can consider the following erasure coding scheme. Let
a0, a1, ..., aN−1 ∈ Fp denote the values of the data blocks where p > 2` is
a prime. We now consider the polynomial

P (x) = aN−1x
N−1 + aN−2x

N−2 + ...+ a1x+ a0 mod p

Now we can construct an erasure coding scheme as follows:

Encode(a0, a1, ..., aN−1): Let P be the above defined polynomial. Output
(i, P (i)) for i ∈ [2N].

22 storage outsourcing

Decode(C1, C2, . . . , CN): Reconstruct the polynomial given (C1, . . . , CN) where
each Ci is of the form Ci := (xi, yi) where xi ∈ [2N] and yi := P (xi).
Output the coefficients of P .

One way to reconstruct the polynomial is by expressing the problem as a
system of linear equations as follows:

1, x1, x
2
1, . . . , x

N−1
1

1, x2, x
2
2, . . . , x

N−1
2

...

1, xN , x
2
N , . . . , x

N−1
N

 ·

a0

a1
...
aN−1

 =

y1

y2
...
yN

 ,

and to recover the polynomial’s coefficients, we just need to solve this linear
system. It turns out that matrices of the above form are called Vandermonde
matrices, and square Vandermonde matrices are invertible as long as all of the
xi’s are distinct [van].

Proof-of-retrievability with erasure code. We can construct a proof-
of-retrieveability scheme as follows:

• Setup. The client leverages an (N, 2N)-erasure coding scheme to encode
the original N blocks into 2N code-blocks. It then builds a Merkle tree
over the 2N code-blocks, and remembers the root digest. It then sends all
the 2N code-blocks as well as the Merkle tree to the server.

• Audit. To audit, the client chooses k random indices from [2N], and
challenges the server to return the corresponding k code-blocks along with
their Merkle proofs. The client checks the returned blocks as well as their
Merkle proofs against the local root digest, and accepts if all pass the check.

Claim 2.2 (Informal.). Let k be a super-logarithmic function in the secu-
rity parameter. Then, with all but negligible probability, as long as the client
accepts during an audit, the server must have stored enough information to
recover all N original blocks.

Note that if the client also needs to read the data every now and then
besides performing audits, the client can additionally outsource a cleartext
copy that is not encoded (along with a separate Merkle tree), in order to
support authenticated reads.

2.3. PRIVACY: OBLIVIOUS RAM 23

Supporting Dynamic Writes

So far, we have assumed that the dataset is static and that the client need not
perform dynamic writes to the data. Due to the introduction of the erasure
coding scheme, performing writes appears difficult. A standard erasure coding
scheme such as the one mentioned earlier performs global encoding, such that
every code-block may depend on all original data blocks. Unfortunately this is
bad news for writes since every time the client updates a block, all code-blocks
must be recomputed!

Fortunately, it turns out that there are known techniques to support dy-
namic writes efficiently with very little additional overhead. For additional
reading, we refer the readers to Shi et al. [SSP13].

Acknowledgments

Thanks to Siqiu Yao and CS6832 students for creating an initial scribe.

2.3 Privacy: Oblivious RAM

Elaine Shi

The setting: you have a large amount of private data (e.g., your genomic
data) stored on an untrusted server. While standard encryption techniques
allow the client to hide the contents of the data from the server, the server can
still observe access patterns to the data. Through such access patterns, the
server can potentially infer sensitive information about your private data. For
example, through frequency and co-occurrence information, the server may be
able to infer what genomic algorithm (e.g., medical test) is being executed on
the genomic data. It is also helpful to think of access pattern leakage through
a programming language perspective: for example, the following program has
an if-branch dependent on secret inputs (e.g., think of the secret input as the
last bit of a secret key) Thus by observing whether memory location x or y is
accessed, one can infer which branch is taken.

if (s) {

mem[x]

} else {

mem[y]

}

