
Chapter 4

Consensus Protocols
Scribe: Yuncong Hu, Yan Ji, Siqiu Yao

4.1 Introduction to Consensus

Consensus protocols are at the core of distributed systems, an important area
that has been investigated for 30 years. For more than a decade, companies
such as Google and Facebook crucially rely on distributed consensus proto-
cols to replicate their database and computing infrastructure. Distributed
computing is also closely related to cryptography — in particular, multi-party
computation, which is at the core of modern cryptography, relies on consensus
techniques to achieve consistency.

Motivating example. Let us consider a cryptocurrency application as a
motivating example. The goal of a digital currency is to keep track of a ledger
that stores each user’s remaining account balance. If Alice has more than
$1000 in her account, she can then pay Bob $1000, e.g., to purchase an iPad
Pro.

A simple way to implement such a cryptocurrency is to rely on a central
server to keep track of the ledger. Any transaction tx := (sender, receiver, amount)
can be submitted to this server: the server would then check whether the
sender has sufficient balance, and if so, it will update both the sender and
receipient’s account balance.

Such a centralized solution has a major drawback: if the single server
crashes, then service will not be available and the server can also lose all
historical data. For example, in September 2016, Delta Airlines had an entire
day of outage due to a failure in their IT infrastructure. On that day, all Delta
flights were cancelled, all flight booking systems failed, and as a result Delta
lost $100M in revenue.

45

46 consensus protocols

The idea of distributed systems is to replicate critical services such as
these, such that we can achieve robustness against faults and failures. Simple
as this idea may seem, it turns out that implementing this idea correctly
is surprisingly challenging — and this explains why it has given rise to an
exciting scientific area that has thrived for more than 30 years.

Key properties of a distributed system: consistency and liveness.
Distributed systems typically require two important properties, consistency
and liveness. Roughly speaking, consistency requires that all servers have the
same view of transaction log; and liveness requires that when a user submits
a transaction, it will be processed quickly.

At first sight, the problem might even seem deceptively simple — indeed,
there is a somewhat trivial solution if all servers always behave correctly. As
it turns out, when some servers can be faulty, the consensus problem is highly
non-trivial!

Of course, if all consensus nodes are faulty, then no guarantee can be
attained. In consensus protocols, we typically require that consistency and
liveness properties must be retained if at least a threshold number of nodes are
behaving correctly (and in the case of permissionless, proof-of-work protocols,
we require that a sufficient fraction of the computational power is behaving
correctly).

Permissioned vs. permissionless distributed systems. The (30 years
of) classical distributed systems literature focused on permissioned distributed
systems, where nodes have a-priori knowledge of the consensus nodes partici-
pating in the protocol. For example, consider a typical deployment scenario:
Google wishes to rely on consensus protocols to replicate their Google Wal-
let service. In this case, perhaps Google can deploy a dozen servers that are
inter-connected through fast, local-area networks. These servers can run a
classical consensus protocol such as Paxos [L+01] or PBFT [CL02a] to reach
agreement about the state of the system.

Recently, as decentralized cryptocurrencies such as Bitcoin [Nak08] and
Ethereum [Woo14] gained popularity, we have pushed consensus protocols to
newer heights. Cryptocurrencies such as Bitcoin employ permissionless con-
sensus protocols, where anyone can join (and leave) the consensus protocol
at any time, and there is no a-priori knowledge of the consensus nodes. Such
Internet-scale consensus also raises new challenges: for example, nodes are het-
erogeneous and may only participate sporadically; networks can be unstable

4.2. DOLEV-STRONG ALGORITHM 47

and have short-term outages; and finally, the number of nodes participating
can be much larger than the traditional, controlled deployment environments.

Modeling faults. In the distributed systems literature, we typically con-
sider two types of faults:

• Crash faults, where a faulty node simply stops pariticipating and ceases to
send protocol messages; and

• Byzantine faults, where a faulty node can behave arbitrarily and send ar-
bitray protocol messages.

Clearly, the latter type of faults is more difficult to handle — this is what
we will mainly focus on in the remainder of this chapter.

Roadmap of the remainder of the chapter. In the remainder of this
chapter, we will first describe examples of classical, permissioned consensus
protocols; and then we will describe modern, permissionless blockchain pro-
tocols. We will also explain various modeling choices and their implications
with respect to what is feasible and what is not.

4.2 Dolev-Strong Algorithm

Byzantine General’s Problem. Assume there are N generals, each com-
manding a portion of the Byzantine army, encircling a city. The generals want
to formulate a plan to attack the city. Every general needs to decide if he is
going to attack or retreat. There is a commanding general who will send or-
ders to other generals. Note that if all the generals could meet in person and
have an agreement on the plan before conducting the attack, this problem
would be trivial.

Network model. We will make the problem more interesting by considering
a modern version: suppose that the generals must reach an agreement over
the Internet. Every day, every general can send an email to all other generals.
The email is guaranteed to be received by the end of the day, such that
when a general wakes up the next morning, he can check his inbox containing
emails from other generals sent on the previous day, and then decide what new
message to send today. Suppose that the generals are tech-savvy, and they
have exchanged their public keys ahead of time. In other words, all generals’

48 consensus protocols

public keys are a-priori known. In this way, the generals can sign their emails
such that no one can forge an honest general’s emails.

Technically, we have described a network model that assumes the following:

• A public-key infrustructure. Note that a public-key infrastructure implies
pairwise authenticated channels, i.e., the adversary cannot tamper with or
modify messages sent by honest nodes (in our example, the generals act as
the nodes).

• A synchronous communication model, i.e., a message sent by an honest
node to an honest recipient is guaranteed to be delivered at the beginning
of the next round.

Recall that our goal is to make every general reach a consensus on attacking
or retreating. To make the problem more interesting, let us assume that some
generals may be corrupt. For example, they may have been bribed by the
enemy and their goal is to cause the remaining honest generals to split in
opinion.

Modeling faults. Henceforth, we assume that honest generals will always
faithfully follow the prescribed protocol; but corrupt generals can deviate arbi-
trarily. More specifically, corrupt generals can send any malicious message or
fail to send a message during a day. Since our problem is called the Byzantine
generals problem, this is why we commonly refer to such faults as Byzantine
faults.

Problem definition. Since corrupt generals can behave arbitrarily, we can-
not expect them output the same bit as the remaining honest generals. We
therefore seek a protocol such that all honest generals would reach consensus
at the end. More formally, we would like to achieve the following properties:

• Validity. If the commanding general is honest, every honest general will
decide on the command (i.e., attack or retreat) proposed by the command-
ing general.

• Agreement. Every honest general reaches the same decision of whether
to attack or retreat.

• Termination. At the end of the protocol, all honest generals will output
a decision.

4.2. DOLEV-STRONG ALGORITHM 49

Observe that if we only require Agreement, Termination, but not Validity, then
there is a trivial solution where everyone simply outputs a canonical answer
such as “attack”.

In other words, the Byzantine Generals problem is trying to realize a
“broadcast” abstraction from pairwise authenticated channels.

Attempts at the Solution. Before describing Dolev-String protocol [DS83]
which is capable of arbitrary number of corruptions, let’s think of an intuitive
method called Majority Voting System.
Assume that everyone has a pair of public and private keys for signing mes-
sages. Upon receiving an order from the commanding general, everyone sends
their signed vote to others. And eventually every general decides on the ma-
jority decision he receives.

Think about a possible attack for this scheme. For simplicity, assume
that there are 4 generals among which there is one commanding general. The
commanding general and 1 other general are corrupt. In this scenario, the
commanding general can send different orders to the honest generals and the
other corrupt general does exactly the same. In the end the two honest gen-
erals will make different decisions, which breaks the Agreement requirement.
Clearly this protocol will not be sufficient to defend against malicious partic-
ipants.

Dolev-Strong protocol. Abstract the order of attacking or retreating as
a single bit b ∈ {0, 1}. And the final decision of each general is abstracted as
an output bit.
Assume among n generals there are at most f traitors. This protocol termi-
nates after f+1 rounds and guarantees Validity and Agreement requirements.

Round 0: Initially for each general i, extractedi = ∅. Assume w.l.o.g.
the commanding general is general 0. He sends the order b attached with his
signature as message {b}sig0 to everyone.

Round r ∈ {1, . . . , f + 1}: For each general i, consider every b ∈ {0, 1}.
If i has received signatures of r generals, denoted as general c0, c1, . . . , cr−1,
attached to b throughout the former r − 1 rounds and b /∈ extractedi, then
extractedi = extractedi ∪ {b} and the general appends his own signature to-
gether with the r signatures he has received to the order bit b and sends the

50 consensus protocols

message {b}sigc0 ,sigc1 ,...,sigcr−1 ,sigi
to others.

After Round f + 1: For each general i,

• if extractedi = {b}, then output b.

• otherwise (i.e. |extractedi| ∈ {0, 2}), output 0.

Proof. Having described the protocol, we must now show that it indeed
satisfies Validity, Agreement and Termination requirements.
Termination is trivial since all honest generals will make a decision and ter-
minate after f + 1 rounds, guaranteed by the assumption of a synchronous
model.
Validity is obvious because if the commanding general is honest, he will follow
the protocol and output the order he sent to others. Thus we only need to
prove Agreement.

Claim 4.1. For a honest general i, if b ∈ extractedi by the end of round
r < f + 1, then for each honest general j, we have b ∈ extractedj by the end
of round r + 1.

Proof. This can be inferred directly from the protocol specification. �

Lemma 4.2. If for some honest general i, b ∈ extractedi by the end of round
f + 1, then for each honest general j, we have b ∈ extractedj by the end of
round f + 1.

Proof. We prove this lemma by case analysis.
For a honest general i,

1. if b first appeared in extractedi by the end of round r < f + 1, then the
conclusion holds according to the Claim above.

2. if b first appeared in extractedi by the end of round f + 1, then i must
have received b with f + 1 distinct signatures in round f + 1. Since
there are at most f traitors, according to Pigeon Hole Principle, at least
one of the signatures is from some honest general j. Assuming that the
signature scheme is secure, this implies that there exists a honest general
j such that b first appeared in extractedj by the end of round r < f + 1.
By applying the Claim above, the conclusion holds.

4.2. DOLEV-STRONG ALGORITHM 51

�
Therefore, all honest generals will have the same extracted set and will

output the same bit, by which Agreement is achieved.

Observation: If we analyze the proof, we will note that it relies heavily
on the fact that there are f + 1 rounds. In fact, if only required f rounds, the
following attack is possible.

• Assume that the commanding general is corrupt, and in round 0 he sends
{1}sig0 to everyone.

• For round r = 1, . . . , f − 1, corrupt generals don’t send any messages to
honest ones.

• In round f corrupt generals send {0}sigc0 ,sigc1 ,...,sigcf−1
to half of the

nodes and {1}sigc0 ,sigc1 ,...,sigcf−1
to the other half. Note that c0, c1, . . . , cf−1

refers to the f corrupt generals here.

In the end, we see that this attack will break Agreement requirement since
half of the honest generals will output 1 while the other half will output 0.

